26.2.1799 Paris/F - 28.1.1864 Paris/F
Benoît-Paul-Emile Clapeyron was both a physicist and an engineer. He graduated in 1818 from Ecole Polytechnique as a mining engineer. He moved then for ten years to Saint Petersburg, Russia, as a professor of mathematics at the Public Works School. Upon returning to France after the 1830 revolution he noted great interest in railroads. Economic failures suggested that the process of heat transformation needed a detailed engineering study. After Clapeyron had in vain tried to found a railroad company, he contributed to railway design with a notable bridge over Seine River. Clapeyron was in 1844 appointed professor at the Ecole des Ponts et Chaussées and in 1848 elected to the Academy of Sciences, Paris. He was a committee member for the Suez Canal works and for the use of steam engines in the navy.
In 1834 Clapeyron discovered the 1824 paper of Sadi Carnot (1796-1832) relating to the second law of thermodynamics and diffused Carnot's ideas. Interest aroused only some ten years later with a contribution of the German Robert Mayer. Clapeyron's name is remembered particularly for his explanation of the thermal phenomena of gas and vapors. He noted that it was important to consider the "fundamental axiom" of Carnot, according to which it is impossible to create from zero neither heat nor work. Also, he noted that heat can generate work, or vice-versa, although these processes are always accompanied with a loss of energy. Clapeyron then developed a graphical method allowing for the prediction of these processes for a specific pressure and gas volume. The Clapeyron equation determines the heat vaporization of a liquid.
Anonymous (1897). Clapeyron. Livre du centenaire 1794-1894: Ecole Polytechnique 1: 194-
198. Gauthier-Villars: Paris.
Anonymous (1939). Clapeyron, Benoît-Paul-Emile. Index biographique des membres et correspondants de l'Académie des Sciences de 1666 à 1939: 104. Gauthier-Villars: Paris.
Bellone, E. (1975). Clapeyron, Benoît-Paul-Emile. Scienziati e tecnologi 1: 316-318.
Mondadori: Milano. P
Cardwell, D.S.L. (1974). Les débuts de la thermodynamique. La Recherche 48(9): 726-749. Clapeyron, E. (1833). Note sur un théorème de mécanique. Annales des Mines Série 3: 63-70. Clapeyron, E. (1834). Mémoire sur la puissance motrice de la chaleur. Journal de l'Ecole Polytechnique 14: 153-190.
Thomson, W. (1852). Mémoires sur la théorie physique de la chaleur. Annales de Chimie et de Physique 35: 118-124, also in Trans. Royal Society Edinburgh 20 (1853): 261-283.

Hydraulicians in Europe 1800-2000 . 2013.

Look at other dictionaries:

  • Clapeyron —   [klapɛ rɔ̃], Benoît Pierre Émile, französischer Ingenieur, * Paris 21. 2. (oder 26. 1.) 1799, ✝ ebenda 28. 1. 1864; ging 1820 mit G. Lamé nach Sankt Petersburg und war dort als Ingenieur und Dozent tätig. Nach seiner Rückkehr (1830) war… …   Universal-Lexikon

  • Clapeyron — (émile) (1799 1864) mathématicien et physicien français. Après Carnot, il consolida les bases de la thermodynamique …   Encyclopédie Universelle

  • Clapeyron — Benoît Clapeyron Benoît Clapeyron. Benoît Paul Émile Clapeyron (* 26. Januar 1799 in Paris; † 28. Januar 1864 in Pa …   Deutsch Wikipedia

  • Clapeyron — Cette page d’homonymie répertorie les différents sujets et articles partageant un même nom. Le terme Clapeyron désigne : le physicien français Émile Clapeyron qui donna son nom : à la formule de Clapeyron, au diagramme de Clapeyron.… …   Wikipédia en Français

  • clapeyron — cla·pey·ron …   English syllables

  • Clapeyron-Satz —   [klapɛ rɔ̃ , nach B. P. É. Clapeyron], clapeyronscher Arbeitssatz [klapɛ rɔ̃ ], Elastomechanik: Formänderungsarbeit …   Universal-Lexikon

  • Clapeyron-Gleichung — Mit der Clapeyron Gleichung, die Benoît Clapeyron 1834 entwickelte, erhält man die Steigung von Phasengrenzlinien in einem Phasendiagramm. Sie lässt sich für verschiedene Fälle spezifizieren. Aus der Clapeyron Gleichung wurde auch die Clausius… …   Deutsch Wikipedia

  • Clapeyron-Slope — Der Clapeyron Slope (engl. slope ‚Steigung‘; nach Benoît Clapeyron) bezeichnet die Druck Temperatur Abhängigkeit von Phasentransformationen von Mineralstrukturen[1] und basiert auf der Clapeyron Gleichung dp/dT = ΔS(p,T)/ΔV(p,T), ist also… …   Deutsch Wikipedia

  • Clapeyron's theorem (elasticity) — In the linear theory of elasticity Clapeyron s theorem states that the potential energy of deformation of a body, which is in equilibrium under a given load, is equal to half the work done by the external forces computed assuming these forces had …   Wikipedia

  • Clapeyron equation — Klapeirono lygtis statusas T sritis fizika atitikmenys: angl. Clapeyron equation vok. Clapeyronsche Gleichung, f rus. уравнение Клапейрона, n pranc. formule de Clapeyron, f; relation de Clapeyron, f …   Fizikos terminų žodynas

Share the article and excerpts

Direct link
Do a right-click on the link above
and select “Copy Link”